

Xiaoxuan Wang

[✉](mailto:xw27@cs.ucla.edu) [xw27@cs.ucla.edu](#) | [Google Scholar](#) | [mandyyyii.github.io](#)

OBJECTIVE

My research centers on **Agentic Reinforcement Learning** and **LLM Reasoning**, with the goal of building stable, scalable agents for real-world interaction and improving scientific reasoning through planning and tool use. I also organize UCLA DM reading group.

EDUCATION

University of California, Los Angeles

Ph.D. in Computer Science Advisor: Wei Wang

Sept. 2022 – Present

Los Angeles, CA

University of Illinois Urbana-Champaign

B.S. in Computer Science, Grainger College of Engineering

Aug. 2018 – May 2022

Urbana, IL

- Minor in Mathematics James Scholar Honor Dean's List

SELECTED PROJECTS

ARLArena: Demystifying Policy Gradient Stability in Agentic Reinforcement Learning

2025 – Present

Project Lead

- Leading a large-scale project on agentic LLMs, developing principled training and inference recipes across 8+ tasks.
- Building a unified and extensible pipeline supporting 16+ policy optimization algorithms, with extensions to asynchronous agent training and MoE models.
- Developing a multi-agent system for solving interactive agentic tasks and extending it to support multi-agent training.
- Conducting extensive empirical analyses of training stability, scalability, and system efficiency, including cross-hardware comparisons across NVIDIA and AMD GPUs.

SciBench: Evaluating Scientific Problem-Solving in Large Language Models

2023 – 2024

- Developed SciBench to evaluate college-level scientific reasoning and problem solving in LLMs.
- Designed evaluation protocols and analyses for model capabilities and failure modes across scientific domains.
- Published at *ICML 2024*; received media coverage in a **Nature News Feature**.

PUBLICATIONS

ARLArena: Demystifying Policy Gradient Stability in Agentic Reinforcement Learning

Xiaoxuan Wang*, Han Zhang*, Haixin Wang*, Yidan Shi, Ruoyan Li, Kaiqiao Han, Chengyi Tong, Haoran Deng, Alex Taylor, Yanqiao Zhu, Renliang Sun, Jingsheng Cong, Yizhou Sun, Wei Wang

Submitted to ICML, 2026

From Solving to Verifying: A Unified Objective for Robust Reasoning in LLMs

Xiaoxuan Wang, Bo Liu, Song Jiang, Jingzhou Liu, Jingyuan Qi, Xia Chen, Baosheng He

Preprint, 2025

MatSciBench: Benchmarking the Reasoning Ability of Large Language Models in Materials Science

Junkai Zhang*, Jingru Gan*, Xiaoxuan Wang, Zian Jia, Changquan Gu, Jianpeng Chen, Yanqiao Zhu, Mingyu Derek Ma, Dawei Zhou, Ling Li, Wei Wang

Preprint, 2025

EAST: Entropy-Based Adaptive Weighting for Self-Training

Xiaoxuan Wang, Yihe Deng, Mingyu Derek Ma, Wei Wang

Submitted to ARR, 2025

SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models

Xiaoxuan Wang*, Ziniu Hu*, Pan Lu*, Yanqiao Zhu*, Jieyu Zhang, Satyen Subramaniam, Arjun R. Loomba, Shichang Zhang, Yizhou Sun, Wei Wang

ICML 2024 Media Coverage: Nature News Feature

CliBench: Multifaceted Evaluation of LLMs in Clinical Decision Making

Mingyu Derek Ma, Chenchen Ye, Yu Yan, Xiaoxuan Wang, Peipei Ping, Timothy S. Chang, Wei Wang

Preprint, 2024

Memorize and Rank: Evaluating LLMs for Clinical Diagnosis Prediction

Mingyu Derek Ma, Xiaoxuan Wang, Yijia Xiao, Anthony Cuturrufo, Wei Wang

AAAI 2025; NeurIPS GenAI4Health 2024

STAR: Boosting Low-Resource Event Extraction via Structure-to-Text Generation

Mingyu Derek Ma, Xiaoxuan Wang, Po-Nien Kung, P. Jeffrey Brantingham, Nanyun Peng, Wei Wang

AAAI 2024

Learning under Label Proportions for Text Classification

Jatin Chauhan, Xiaoxuan Wang, Wei Wang

INTERNSHIP EXPERIENCE

Meta Platforms, Inc.

Summer 2025

Research Intern (AI)

- Developed **GRPO-Verif**, a novel reinforcement learning algorithm that jointly optimizes solution generation and self-verification in LLMs via a unified loss formulation.
- Demonstrated improved self-verification while preserving reasoning performance, with tunable hyperparameters controlling verification signal strength.
- Conducted large-scale empirical evaluations validating robustness and generalization.

Amazon Development Center U.S., Inc.

Summer 2024

Applied Scientist Intern

- Implemented and evaluated RLHF methods including REST-EM, Iterative DPO, and variants for tool-integrated problem solving in LLMs.
- Identified sensitivity of REST-EM to data quality and quantity relative to online preference optimization methods.
- Showed that regularization mitigates overfitting from self-generated data and improves tool usage through controlled log-probability optimization.

SKILLS

Research Areas: Agentic RL, Post-Training, LLM Reasoning, Tool-Augmented Agents, RLHF

Languages: Python, C++, Java, SQL

Frameworks: PyTorch, Ray, vLLM, HuggingFace, FSDP